Weighted Conditional Logistic Regression for CXO study
Arguments
- data
input dataframe
- exposure
name of exposure variable
- event
name of outcome variable
- Id
person ID
- tvc
name of time-varying confounder (optional)
Examples
data(cases)
cfit <- CXO_wt(data=cases, exposure=ex, event=Event, Id=Id)
summary(cfit)
#> Call:
#> coxph(formula = Surv(rep(1, 24840L), case_period) ~ ex + strata(Id) +
#> offset(lw), data = cases_wt, method = "efron")
#>
#> n= 24840, number of events= 276
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> ex1 0.3363 1.3997 0.1215 2.767 0.00566 **
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> ex1 1.4 0.7144 1.103 1.776
#>
#> Concordance= 0.563 (se = 0.015 )
#> Likelihood ratio test= 7.74 on 1 df, p=0.005
#> Wald test = 7.65 on 1 df, p=0.006
#> Score (logrank) test = 7.73 on 1 df, p=0.005
#>