Weighted conditional logistic regression for case-time-control study
Source:R/CXO_tc_funcs.R
CXO_tc_wt.Rd
Weighted conditional logistic regression for case-time-control study
Arguments
- data
input dataframe
- exposure
exposure variable
- event
outcome variable
- Id
person ID
- tvc
time-varying confounder (optional)
Examples
data(casetimecontrols)
ctcfit <- CXO_tc_wt(data=casetimecontrols,exposure=ex,event=Event,Id=Id)
summary(ctcfit)
#> Call:
#> coxph(formula = Surv(rep(1, 56250L), case_period) ~ ex + ex_tc +
#> strata(Id) + offset(lw), data = cases_wt, method = "efron")
#>
#> n= 56250, number of events= 625
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> ex1 -0.01725 0.98290 0.16274 -0.106 0.916
#> ex_tc1 0.44988 1.56812 0.10822 4.157 3.22e-05 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> ex1 0.9829 1.0174 0.7145 1.352
#> ex_tc1 1.5681 0.6377 1.2684 1.939
#>
#> Concordance= 0.583 (se = 0.01 )
#> Likelihood ratio test= 30.34 on 2 df, p=3e-07
#> Wald test = 29.95 on 2 df, p=3e-07
#> Score (logrank) test = 30.44 on 2 df, p=2e-07
#>