This R package was is code to implement weighted conditional logistic regression described here.
Installation
CXOwt
is still under development. You can install the latest version from GitHub with:
# install.packages("remotes")
remotes::install_github("lan-k/CXOwt")
Data
Data should be structured with one row per period per person. The data should be ordered so that for each person, the earliest period appears first in the data, the case period appears last.
The following 3 variables are required: Patient ID Binary exposure indicator (0 for unexposed or 1 for exposed) Binary indicator for the outcome
- 0 in control periods
- 1 in case period for cases
- 0 in case period for time controls
The package comes with two example dataframes
- “cases” with cases only
- “casetimecontrols” with cases and time controls
The exposure variable is “ex” and the outcome variable is “Event”.
library(CXOwt)
#case-crossover
data(cases)
head(cases)
#> # A tibble: 6 × 6
#> Id ex Event day age sex
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 1 0 1 48 0
#> 2 2 1 0 2 48 0
#> 3 2 1 0 3 48 0
#> 4 2 0 0 4 48 0
#> 5 2 0 0 5 48 0
#> 6 2 0 0 6 48 0
tail(cases) # last few rows of data for a case
#> # A tibble: 6 × 6
#> Id ex Event day age sex
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 499 1 0 85 33 1
#> 2 499 1 0 86 33 1
#> 3 499 1 0 87 33 1
#> 4 499 1 0 88 33 1
#> 5 499 1 0 89 33 1
#> 6 499 1 1 90 33 1
#case-time-controls
data(casetimecontrols)
tail(casetimecontrols[casetimecontrols$Id == 2,]) # last few rows of data for a time control
#> # A tibble: 6 × 6
#> Id ex Event day age sex
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 0 0 85 44 0
#> 2 2 0 0 86 44 0
#> 3 2 0 0 87 44 0
#> 4 2 0 0 88 44 0
#> 5 2 0 0 89 44 0
#> 6 2 0 0 90 44 0
Using the package
CXOwt
contains functions for both case-crossover and case-time-control designs. There are 2 example dataframes, cases
and casetimecontrols
.
CXO_wt_boot()
is the version for case-crossover studies, CXO_tc_wt_boot()
for case-time-control studies. Both return the weighted Odds Ratio estimate and bootstrapped 95% confidence intervals.
library(CXOwt)
#case-crossover
data(cases)
cfit.b <- CXO_wt_boot(data=cases, exposure = ex, event = Event, Id=Id, B=500)
summary(cfit.b)
#case-time-control
data(casetimecontrols)
ctcfit.b <- CXO_tc_wt_boot(data=casetimecontrols, exposure = ex, event = Event, Id=Id, B = 500)
summary(ctcfit.b)
Alternatively, you can return the weighted conditional logistic regression objects without bootstrapping. However, the standard errors and 95% confidence intervals may not be accurate. The output will be a ‘clogit’ object.
#case-crossover
cfit <- CXO_wt(cases, exposure = ex, event = Event, Id=Id)
exp(cbind(coef(cfit), confint(cfit)))
#> 2.5 % 97.5 %
#> e 1.429248 1.126288 1.8137
#case-time-control
ctcfit <- CXO_tc_wt(casetimecontrols, exposure = ex, event = Event, Id=Id)
exp(cbind(coef(ctcfit), confint(ctcfit)))
#> 2.5 % 97.5 %
#> ex1 0.9828992 0.7144712 1.352176
#> ex_tc1 1.5681218 1.2684209 1.938636
Other functions include
- ‘mhor’ to produce Mantel-Haenszel (MH) Odds Ratios
- ‘SCL_bias’ to estimate the bias in (unweighted) conditional logistic regression compared with MH ORs